ON STRONGLY SPANNING k-EDGE-COLORABLE SUBGRAPHS

نویسندگان

  • Vahan V. Mkrtchyan
  • Gagik N. Vardanyan
  • Mariusz Meszka
چکیده

A subgraph H of a multigraph G is called strongly spanning, if any vertex of G is not isolated in H. H is called maximum k-edge-colorable, if H is proper k-edge-colorable and has the largest size. We introduce a graph-parameter sp(G), that coincides with the smallest k for which a multigraph G has a maximum k-edge-colorable subgraph that is strongly spanning. Our first result offers some alternative definitions of sp(G). Next, we show that ∆(G) is an upper bound for sp(G), and then we characterize the class of multigraphs G that satisfy sp(G) = ∆(G). Finally, we prove some bounds for sp(G) that involve well-known graph-theoretic parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On spanning $k$-edge-colorable subgraphs

A subgraph H of a multigraph G is called strongly spanning, if any vertex of G is not isolated in H , while it is called maximum k-edge-colorable, if H is proper k-edge-colorable and has the largest size. We introduce a graph-parameter sp(G), that coincides with the smallest k that a graph G has a strongly spanning maximum k-edge-colorable subgraph. Our first result offers some alternative defi...

متن کامل

On disjoint matchings in cubic graphs: Maximum 2-edge-colorable and maximum 3-edge-colorable subgraphs

We show that any 2−factor of a cubic graph can be extended to a maximum 3−edge-colorable subgraph. We also show that the sum of sizes of maximum 2− and 3−edge-colorable subgraphs of a cubic graph is at least twice of its number of vertices.

متن کامل

Maximum Δ-edge-colorable subgraphs of class II graphs

A graph G is class II, if its chromatic index is at least ∆ + 1. Let H be a maximum ∆-edge-colorable subgraph of G. The paper proves best possible lower bounds for |E(H)| |E(G)| , and structural properties of maximum ∆-edge-colorable subgraphs. It is shown that every set of vertex-disjoint cycles of a class II graph with ∆ ≥ 3 can be extended to a maximum ∆-edge-colorable subgraph. Simple graph...

متن کامل

Generating k-Vertex Connected Spanning Subgraphs and k-Edge Connected Spanning Subgraphs

We show that k-vertex connected spanning subgraphs of a given graph can be generated in incremental polynomial time for any fixed k. We also show that generating k-edge connected spanning subgraphs, where k is part of the input, can be done in incremental polynomial time. These results are based on properties of minimally k-connected graphs which might be of independent interest.

متن کامل

Approximating the Maximum 3- and 4-Edge-Colorable Subgraph

We study large k-edge-colorable subgraphs of simple graphs and multigraphs. We show that: – every simple subcubic graph G has a 3-edge-colorable subgraph (3ECS) with at least 13 15 |E(G)| edges, unless G is isomorphic to K4 with one edge subdivided, – every subcubic multigraph G has a 3-ECS with at least 7 9 |E(G)| edges, unless G is isomorphic to K3 with one edge doubled, – every simple graph ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017